Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

(1SR,2SR,3SR,4RS,5RS,6RS,7SR,8RS)-7,8-Dichlorobicyclo[4.2.0]octa-2,3,4,5-tetrayl tetraacetate

Ertan Şahin, ${ }^{\text {a* }}$ Latif Kelebekli, ${ }^{\text {a }}$ Yunus Kara ${ }^{\text {a }}$ and Metin Balci ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Atatürk, 25240 Erzurum, Turkey, and
${ }^{\text {b }}$ Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey Correspondence e-mail: ertan@atauni.edu.tr

Received 24 April 2006
Accepted 17 May 2006
Online 23 June 2006

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{8}$, the bicyclic system contains a central non-planar cyclohexane ring which is fused to a cyclobutane moiety. The cyclohexane ring has a chair conformation and the whole system adopts a syn conformation. The structure provides information on the stereochemical course of the chlorination, photo-oxidation and hydroxylation steps of the reaction.

Comment

Carbohydrates are densely functionalized molecules and, as a result, their synthesis often requires many reaction steps, usually including the manipulation of different protecting groups. There are many synthetic strategies leading to the various conduritol isomers and their derivatives (Gültekin et al., 2004). We have previously used a photo-oxygenation reaction to introduce two oxygen functionalities in the $1,4-$ positions of the appropriate dienes, followed by cleavage of the peroxide linkage (Sütbeyaz et al., 1990; Seçen et al., 1990, 1992, 1993; Salamci et al., 1997; Kara \& Balci, 2003). cisDichlorobicyclooctadiene, (1), was synthesized as described in the literature (Gözel et al., 1991). Photooxidation of (1) with singlet oxygen gave the expected endoperoxide, (2) (see scheme) (Reppe et al., 1948). Reduction of the peroxide bond in (2) was performed with thiourea under very mild conditions to give the diol, (3a) (Kelebekli et al., 2005; Balci, 1981). For further proof of the structure, ($3 a$) was converted into the corresponding diacetate, ($3 b$), which was fully characterized by spectroscopic methods. cis-Hydroxylation of (3b) with KMnO_{4} at 263 K gave a mixture of diols (4a) and (5a) in a ratio of 1:1. These were converted into the tetraacetate derivatives, ($4 b$) and ($5 b$), which were separated by fractional crystallization from hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The title isomer (4b) crystallized out first (Kelebekli et al., 2005). The exact configuration of compound ($4 b$) has now been determined by X-ray diffraction analysis. The structure provides information
on the stereochemical course of the chlorination, photooxidation and hydroxylation stages of the reaction.

(1)

(2)

(3)
KMnO_{4} $\mathrm{ElOH} / \mathrm{H}_{2} \mathrm{O}$
$77 \%(1: 1)$

$$
\begin{array}{ll}
(4 a) /(5 a) & R=\mathrm{H} \\
(4 b) /(5 b) & R=\mathrm{Ac}
\end{array}
$$

(5)

(4)

Isomer (4b) crystallizes in the space group $P \overline{1}$, with $Z=2$. It contains a central non-planar cyclohexane ring with a cyclobutane ring fused to it. Each C atom is tetrahedral. The all-cis stereochemistry of the four acetate groups was determined unequivocally. The same cis stereochemistry was also seen in the dibromotetraacetate compound (Kara et al., 1994), but there the Br atoms had a trans conformation.

All the substituents, including the acetoxy and chloro groups, are on the same side of the bicycle (syn conformation). In addition to this, the Cl atoms have cis stereochemistry. The six-membered ring adopts a chair conformation, with puckering parameters (Cremer \& Pople, 1975) $Q_{\mathrm{T}}=0.525$ (2) Å, $\theta=151.1$ (2) ${ }^{\circ}$ and $\varphi=185.7$ (5) ${ }^{\circ}$ (Fig. 1).

The cyclobutane moiety is appreciably distorted, with $\mathrm{C}-\mathrm{C}$ distances in the range 1.534 (3)-1.567 (3) \AA. The strong electronegativity of the Cl atoms along the $\mathrm{C} 3-\mathrm{C} 7-\mathrm{Cl} 1$ and $\mathrm{C} 4-$ $\mathrm{C} 8-\mathrm{Cl} 2$ chains causes elongation of the $\mathrm{C} 3-\mathrm{C} 4$ bond.

Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between cyclohexane H atoms of the cyclic system and the acetyl O atom are

Figure 1
A drawing of the title molecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 2
The crystal structure of ($4 b$), viewed down the a axis. Hydrogen bonds are indicated by dashed lines. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry code: (i) $-x+1,-y+1$, $-z+1$.]
effective in determining the molecular conformation of (4b) $\left[\mathrm{C} 2 \cdots \mathrm{OB}^{\mathrm{i}}=3.279(2) \AA\right.$ and $\mathrm{C} 8 \cdots \mathrm{OB}^{\mathrm{i}}=3.339$ (3) \AA; symmetry code: (i) $1-x, 1-y, 1-z]$. The molecules are elongated approximately parallel to the (001) plane and are stacked approximately along the a direction (Fig. 2).

Experimental

For the preparation of (2) (Gözel et al., 1991), tetraphenylporphyrin (TPP; 30 mg) was added to a stirred solution of the dichlorodiene, (1) (Reppe et al., 1948) ($3.0 \mathrm{~g}, 17 \mathrm{mmol}$), in $\mathrm{CCl}_{4}(100 \mathrm{ml})$. The resulting mixture was irradiated with a projection lamp (500 W) while oxygen was passed through the solution, and the mixture was stirred at room temperature for 8 h . Evaporation of the solvent ($303 \mathrm{~K}, 20 \mathrm{~mm} \mathrm{Hg}$; $1 \mathrm{~mm} \mathrm{Hg}=133.322 \mathrm{~Pa}$) and chromatography of the residue on a silica-gel column $(50 \mathrm{~g})$ eluted with hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ gave pure endoperoxide (2) ($2.67 \mathrm{~g}, 75 \%$, m.p. $364-365 \mathrm{~K}$). The compound was recrystallized from CHCl_{3}-hexane ($1: 2 \mathrm{v} / \mathrm{v}$).

For the preparation of (3a), a solution of endoperoxide (2) (1.20 g , $5.79 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{ml})$ was added to a magnetically stirred slurry of thiourea ($0.44 \mathrm{~g}, 5.79 \mathrm{mmol}$) in methanol (30 ml) at room temperature. After completion of the addition (ca 10 min), the mixture was stirred for 1 h and the solid was removed by filtration. Evaporation of the solvent gave diol ($3 a$) $(1.15 \mathrm{~g}, 95 \%)$ as a colourless oil.

For the preparation of ($3 b$), diol ($3 a$) ($0.81 \mathrm{~g}, 3.87 \mathrm{mmol}$) was dissolved in acetyl chloride (10 ml) and the resulting solution was stirred at room temperature overnight. The excess unreacted acetyl chloride was evaporated $(333 \mathrm{~K}, 20 \mathrm{~mm} \mathrm{Hg})$. The residue was dissolved in CHCl_{3} and filtered through silica gel. Evaporation of the solvent gave ($3 b$) ($1.08 \mathrm{~g}, 94 \%$, m.p. 327-328 K). The compound was recrystallized from CHCl_{3}-hexane ($1: 1 \mathrm{v} / \mathrm{v}$).

For the preparation of $(4 b) /(5 b)$ (Kelebekli et al., 2005), a solution of $\mathrm{KMnO}_{4}(0.3 \mathrm{~g}, 1.88 \mathrm{mmol})$ and $\mathrm{MgSO}_{4}(0.23 \mathrm{~g}, 1.88 \mathrm{mmol})$ in water $(20 \mathrm{ml})$ was added to a stirred solution of dichlorodiacetate $(3 b)$ $(0.55 \mathrm{~g}, 1.88 \mathrm{mmol})$ in $\mathrm{EtOH}(50 \mathrm{ml})$ at 263 K over a period of 5 h . After completion of the addition, the reaction mixture was stirred for an additional 15 h at 268 K and then filtered. The precipitate was washed several times with hot water. The combined filtrates were concentrated to 20 ml by rotary evaporation ($333 \mathrm{~K}, 20 \mathrm{~mm} \mathrm{Hg}$). The
aqueous solution was extracted with ethyl acetate $(3 \times 75 \mathrm{ml})$ and the extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. After removal of the solvent, the crude mixture was acetylated as described above to give compounds ($5 b$) and ($4 b$) in a $1: 1$ ratio (according to ${ }^{1} \mathrm{H}$ NMR) $(0.59 \mathrm{~g}, 77 \%)$. Compounds ($4 b$) and ($5 b$) were separated by recrystallization from hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1 \mathrm{v} / \mathrm{v})$. The title compound, ($4 b$), formed colourless crystals from hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1 \mathrm{v} / \mathrm{v})(\mathrm{m} . \mathrm{p} .444-446 \mathrm{~K})$.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{O}_{8}$
$M_{r}=411.22$
Triclinic, $P \overline{1}$
$a=8.9489$ (5) \AA
$b=11.0230$ (8) \AA
$c=11.2885$ (7) \AA
$\alpha=111.427(2)^{\circ}$
$\beta=98.2810(10)^{\circ}$
$\gamma=108.8340(10)^{\circ}$

Data collection

Rigaku R-AXIS RAPID S
diffractometer
Oscillation scans
Absorption correction: multi-scan
(Blessing, 1995)
$T_{\text {min }}=0.909, T_{\text {max }}=0.926$

$$
\begin{aligned}
& V=936.70(10) \AA^{3} \\
& Z=2 \\
& D_{x}=1.458 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.39 \mathrm{~mm}^{-1} \\
& T=295(2) \mathrm{K} \\
& \text { Block, white } \\
& 0.32 \times 0.21 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

64683 measured reflections
7145 independent reflections 6532 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=33.2^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0595 P)^{2} \\
&+0.3756 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.00 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.076$
$w R\left(F^{2}\right)=0.190$
$S=1.32$
7145 reflections

H atoms treated by a mixture of independent and constrained refinement

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	$1.00(2)$	$2.31(2)$	$3.279(2)$	$161(2)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots 8^{\mathrm{i}}$	$0.89(3)$	$2.50(3)$	$3.339(3)$	$158(2)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Methyl atoms were positioned geometrically, with $\mathrm{C}-\mathrm{H}=0.96 \AA$, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{C})$. All other H atoms were located in a difference synthesis and refined isotropically $[\mathrm{C}-\mathrm{H}=0.89$ (3)-1.00 (2) \AA].

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Department of Chemistry and Atatürk University, Turkey, for the use of the X-ray diffractometer purchased under grant number 2003/219 of the University Research Fund.

[^0]
organic compounds

References

Balci, M. (1981). Chem. Rev. 81, 91-108.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gözel, Y., Kara, Y. \& Balci, M. (1991). Turk. J. Chem. 15, 274-285.
Gültekin, M. S., Celik, M. \& Balci, M. (2004). Curr. Org. Chem. 8, 1159-1186.
Kara, Y. \& Balci, M. (2003). Tetrahedron, 59, 2063-2066.
Kara, Y., Balci, M., Bourne, S. A. \& Watson, W. H. (1994). Tetrahedron Lett. 35, 3349-3352.
Kelebekli, L., Kara, Y. \& Balci, M. (2005). Carbohydr. Res. 340, 19401948.

Reppe, W., Schlichting, O., Klager, K. \& Topel, T. (1948). Ann. Chem. 560, 1-92.
Rigaku (2005). CrystalClear. Version 1.3.6. Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Salamci, E., Secen, H., Sütbeyaz, Y. \& Balci, M. (1997). J. Org. Chem. 62, 24532457.

Seçen, H., Maraş, A., Sütbeyaz, Y. \& Balci, M. (1992). Synth. Commun. 22, 2613-2619.
Seçen, H., Salamci, E., Sütbeyaz, Y. \& Balci, M. (1993). Synlett, pp. 609-610. Seçen, H., Sütbeyaz, Y. \& Balci, M. (1990). Tetrahedron Lett. 31, 1323-1326. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sütbeyaz, Y., Seçen, H. \& Balci, M. (1990). J. Chem. Soc. Chem. Commun. pp. 1330-1331.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ3010). Services for accessing these data are described at the back of the journal.

